Современное развитие науки и повышение требований промышленного производства приводят к возрастающей роли методов моделирования в различных отраслях человеческой деятельности. В области пчеловодства известно всего несколько попыток применения моделей для оценки медосбора.
Одна из пионерских работ принадлежит В.Ф.Армееву с соавторами (ж-л «Пчеловодство» №7, 1987), в которой пропагандируется преимущество моделей перед натурным опытом. Стандартная методика определения медосбора общеизвестна (Пономарева и др., 1986; Харченко и др., 2003). Работу выполняют так: определяют медовый запас местности и умножают его на коэффициент использования нектара пчелами, лежащий в довольно широком диапазоне — 30–50%.
Рациональное планирование нектарной и зерновой продуктивности, то есть выбор оптимального числа семей, необходимого для наилучшего медосбора и опыления, осуществляют с помощью простейших математических действий. Однако для точного и согласованного расчета необходимо учитывать конкретные условия фуражировки: плотность числа цветков у растений и конкуренцию фуражиров, расстояние до культур, силу семей в конкретный период сезона, их летную активность, погодные условия и т.д.
В лаборатории биофизики Уральского государственного университета разработана комплексная модель нектаропродуктивной агроэкосистемы, призванная помочь в решении указанных задач (ж-л «Пчеловодство» №5, 2007). В ней учитываются все перечисленные и некоторые другие факторы (включая «интеллектуальное» поведение семей), находящиеся в тесной взаимосвязи друг с другом.
Модель содержит систему из около 40 уравнений (в том числе интегро-дифференциальных) и достаточно надежно верифицирована по научным данным, опубликованным в литературе. Разработанная компьютерная модель позволяет рассчитывать (рис. 1): UF — коэффициент использования массивов нектароносных растений (то есть долю собранного пчелами нектара); H — чистый нектарный доход с учетом потребления меда семьями на собственные нужды; VR — среднюю кратность числа посещений цветков (опылительный эффект).
Модель показывает, что коэффициент использования UF и кратность посещений цветков VR возрастают нелинейно с числом семей, достигая характерного насыщения. Согласно приведенным графикам (см. рис. 1) можно оценить, что предельная доля используемого пчелами нектара, например для гречихи, равна чуть более 30%.
Учитывая, что сбор его с этой культуры довольно сложен для пчел, приведенное значение хорошо соответствует нижней границе эмпирического диапазона 30–50%. По графикам, подобным рис. 1, можно определить оптимальное число семей, которое необходимо содержать для медосбора и опыления.
Видно, что для максимального медосбора с гречихи целесообразно содержать около 0,5–1 семьи на 1 га. При увеличении указанного числа ожидаемый доход не возрастает, так как идет снижение развития и летной деятельности семей. Для повышения зерновой продуктивности гречихи оптимально содержать около 2–3 семей на 1 га, что обеспечивает эффективную кратность (1–2) посещений/цветок (Бурмистров и др., 2005).
По эмпирическим данным для эффективного опыления гречихи необходимо содержать около 2 семей на 1 га (Таранов, 1961; Пономарева и др., 1986; Бурмистров и др., 2005), что подтверждает результаты моделирования. Однако моделирование позволяет сделать и другой практически важный вывод: для оптимального медосбора и опыления необходимо содержать разное число семей. Для опыления, как правило, их требуется больше. Это согласуется с общими биологическими представлениями, что цели растений (опыление) и насекомых-опылителей (сбор корма) не совпадают (Фегри и др., 1982).
Модель позволяет также оценивать продуктивность семей в зависимости от удаленности нектароносных культур (рис. 2). Так, на расстоянии 3–5 км до массива нектароносных растений продуктивность семей падает вдвое. Предсказания модели можно использовать при принятии решений о целесообразности перевозки пчел с учетом ее стоимости и выигрыша от получения дополнительной товарной продукции. Кроме этого, модель обладает рядом других практически важных возможностей.
Несомненно, разработанный комплекс нуждается в дальнейшем развитии. Однако цель работы — продемонстрировать широкие возможности современных теоретических методов прогнозирования и планирования, показать полезность и перспективу их внедрения в практику пчеловодства.
А.В.КУДРЯКОВ
Лаборатория биофизики
Уральского госуниверситета

Нужна ли пчелам полиэтиленовая пленка?…
дек 15, 2014
Дезинфицирующие свойства озона…
дек 12, 2015
Соединяю в шип
янв 25, 2015
Пункты спаривания при создании приокских…
апр 8, 2015
Мой метод двухкорпусного содержания…
окт 30, 2016
Мой опыт
дек 20, 2015
Шершень — хищник медоносной пчелы…
апр 7, 2015
Симбиоз пчелы и пчеловода…
окт 28, 2014
Глубокое дно
окт 2, 2014
Как шмели определяют качество пыльцы?…
фев 2, 2017
Ящик-термос пчеловода
сен 16, 2015
Переходите на узковысокую рамку…
март 9, 2016
Несколько слов о терминах и определениях…
мая 20, 2015
Микроэлементы в жизнедеятельности органи…
нояб 9, 2019
Лекарство от гриппа
фев 18, 2017












Адрес редакции журнала "Пчеловодство":



